Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector(SpringerBriefs in Applied Sciences and Technology)

评估农业部门统计信息的机器学习方法

工业工程学

原   价:
676.00
售   价:
507.00
优惠
平台大促 低至8折优惠
发货周期:国外库房发货,通常付款后3-5周到货!
出  版 社
出版时间
2024年04月05日
装      帧
平装
ISBN
9783031546075
复制
页      码
136
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This book presents machine learning approaches to identify the most important predictors of crucial variables for dealing with the challenges of managing production units and designing agriculture policies. The book focuses on the agricultural sector in the European Union and considers statistical information from the Farm Accountancy Data Network (FADN).Presently, statistical databases present a lot of information for many indicators and, in these contexts, one of the main tasks is to identify the most important predictors of certain indicators. In this way, the book presents approaches to identifying the most relevant variables that best support the design of adjusted farming policies and management plans. These subjects are currently important for students, public institutions and farmers. To achieve these objectives, the book considers the IBM SPSS Modeler procedures as well as the respective models suggested by this software.The book is read by students in production engineering, economics and agricultural studies, public bodies and managers in the farming sector.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个